For all of its wild popularity, caffeine is one seriously misunderstood substance. It's not a simple upper, and it works differently on different people with different tolerances—even in different menstrual cycles. But you can make it work better for you.
Photo by rbrwr.
We've covered all kinds of caffeine "hacks" here at Lifehacker, from taking "caffeine naps" to getting "optimally wired." And, of course, we're obsessed with the perfect cup of coffee. But when it comes to why so many of us love our coffee, tea, soda, or energy drink fixes, and what they actually do to our busy brains, we've never really dug in.
While there's a whole lot one can read on caffeine, most of it falls in the realm of highly specific medical research, or often conflicting anecdotal evidence. Luckily, one intrepid reader and writer has actually done that reading, and weighed that evidence, and put together a highly readable treatise on the subject. Buzz: The Science and Lore of Alcohol and Caffeine, by Stephen R. Braun, is well worth the short 224-page read. It was released in 1997, but remains the most accessible treatise on what is and isn't understood about what caffeine and alcohol do to the brain. It's not a social history of coffee, or a lecture on the evils of mass-market soda—it's condensed but clean science.
What follows is a brief explainer on how caffeine affects productivity, drawn from Buzz and other sources noted at bottom. We also sent Braun a few of the questions that arose while reading, and he graciously agreed to answer them.
Caffeine Doesn't Actually Get You Wired
Right off the bat, it's worth stating again: the human brain, and caffeine, are nowhere near totally understood and easily explained by modern science. That said, there is a consensus on how a compound found all over nature, caffeine, affects the mind.Every moment that you're awake, the neurons in your brain are firing away. As those neurons fire, they produce adenosine as a byproduct, but adenosine is far from excrement. Your nervous system is actively monitoring adenosine levels through receptors. Normally, when adenosine levels reach a certain point in your brain and spinal cord, your body will start nudging you toward sleep, or at least taking it easy. There are actually a few different adenosine receptors throughout the body, but the one caffeine seems to interact with most directly is the A1 receptor. More on that later.
Enter caffeine. It occurs in all kinds of plants, and chemical relatives of caffeine are found in your own body. But taken in substantial amounts—the semi-standard 100mg that comes from a strong eight-ounce coffee, for instance—it functions as a supremely talented adenosine impersonator. It heads right for the adenosine receptors in your system and, because of its similarities to adenosine, it's accepted by your body as the real thing and gets into the receptors.
Update: Commenter dangermou5e reminds us of web comic The Oatmeal's take on adenosine and caffeine. It's concise:
More important than just fitting in, though, caffeine actually binds to those receptors in efficient fashion, but doesn't activate them—they're plugged up by caffeine's unique shape and chemical makeup. With those receptors blocked, the brain's own stimulants, dopamine and glutamate, can do their work more freely—"Like taking the chaperones out of a high school dance," Braun writes in an email. In the book, he ultimately likens caffeine's powers to "putting a block of wood under one of the brain's primary brake pedals."
It's an apt metaphor, because it spells out that caffeine very clearly doesn't press the "gas" on your brain, and that it only blocks a "primary" brake. There are other compounds and receptors that have an effect on what your energy levels feel like—GABA, for example—but caffeine is a crude way of preventing your brain from bringing things to a halt. "You can," Braun writes, "get wired only to the extent that your natural excitatory neurotransmitters support it." In other words, you can't use caffeine to completely wipe out an entire week's worth of very late nights of studying, but you can use it to make yourself feel less bogged down by sleepy feelings in the morning.
These effects will vary, in length and strength of effect, from person to person, depending on genetics, other physiology factors, and tolerance. But more on that in a bit. What's important to take away is that caffeine is not as simple in effect as a direct stimulant, such as amphetamines or cocaine; its effect on your alertness is far more subtle.
It Boosts Your Speed, But Not Your Skill—Depending on Your Skill Set
Johann Sebastian Bach loved him some coffee. So did Voltaire, Balzac, and many other great minds. But the type of work they did didn't necessarily get a boost from their prodigious coffee consumption—unless their work was so second-nature to them that it felt like data entry.The general consensus on caffeine studies shows that it can enhance work output, but mainly in certain types of work. For tired people who are doing work that's relatively straightforward, that doesn't require lots of subtle or abstract thinking, coffee has been shown to help increase output and quality. Caffeine has also been seen to improve memory creation and retention when it comes to "declarative memory," the kind students use to remember lists or answers to exam questions.
(In a semi-crazy side note we couldn't resist, researchers have implied this memory boost may be tied to caffeine's effect on adrenaline production. You have, presumably, sharper memories of terrifying or exhilarating moments in life, due in part to your body's fight-or-flight juice. Everyone has their "Where I was when I heard that X died" story, plugging in John F. Kennedy, John Lennon, or Kurt Cobain, depending on generational relatability).
Then again, one study in which subjects proofread text showed that a measurable boost was mainly seen by those who could be considered "impulsive," or willing to sacrifice accuracy and quality for speed. And the effect was only seen in morning tests, indicating the subjects may have either become lightly dependent on caffeine, or were more disposed to such tasks at that time of day.
So when it comes to caffeine's effects on your work, think speed, not power. Or consider it an unresolved question. If we're only part of the way to understanding how caffeine affects the brain, we're a long way to knowing exactly what kind of chemicals or processes are affected when, say, one writes a post about caffeine science one highly caffeinated afternoon.
For a more direct look at what happens to your brain when there's caffeine in your system, we turn to the the crew at Current. They hooked up one of their reporters to a brain monitor while taking on some new caffeine habits, and share their brains on caffeine.
gizmodo.com
Komentar
Posting Komentar